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Abstract. We apply the expanded basis method (EBM) to investigate the behavior of light in a two-
dimensional photonic crystal (PC) slab. This method is based on expanded completeness bases, including
both the propagation and evanescence modes. We calculate the reflected and transmitted coefficients and
the corresponding field distributions in the case of multiple mode transportation. We also show the related
phases which exhibit oscillations with the frequency of the incident light.

PACS. 42.70.Qs Photonic bandgap materials – 42.25.Gy Edge and boundary effects; reflection and
refraction – 42.68.Ay Propagation, transmission, attenuation, and radiative transfer – 42.25.Bs Wave
propagation, transmission and absorption

1 Introduction

Photonic crystals (PCs), which possess spatially modu-
lated dielectric structures, exhibit rich dispersion rela-
tions consisting of pass-bands and photonic band gaps
(PBGs) [1,2]. Many novel phenomena induced by the
PBGs have been revealed in perfect periodical struc-
tures [3–8]. However, a real sample always has a finite
size and contains several interfaces, thus, the coupling be-
tween the incident light wave and the Bloch mode in PCs
at interfaces should be considered.

A variety of theoretical or numerical methods have
been proposed to study the behavior of light in finite-
size PCs, for instance, the finite-difference time-domain
(FDTD) technique, transfer matrix method (TMM), and
multiple-scattering method (MSM), etc. Some methods
based on a plane-wave expansion (PWE) of the electro-
magnetic (EM) field have been employed to calculate the
reflection and transmission spectra of PC slabs [9–11]. Re-
cently, Notomi [12] and Xu et al. [13] studied the behav-
ior of the reflected light at a two-dimensional (2D) PC
surface. Istrate et al. [14] discussed the reflection of light
waves using the zeroth order Fourier component of the
plane wave expansion at the interface of a finite size 2D PC
based on the concept of effective refractive index (ERI)
of a material. Yang et al. [15] studied the characteristics
of the light propagation through a 2D PC slab with the
use of the effective medium approximation based on equi-
frequency surface calculations.

The expanded basis method (EBM) has been exten-
sively adopted to study the transport properties of elec-
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trons in low-dimensional semiconductor quantum waveg-
uides [16,17]. The calculation of the dispersion relation
of electrons is usually attributed to solving the standard
eigen equation, where only the propagating mode (with
real wave number) is involved. By introducing auxiliary
functions and rewriting in terms of an expanded basis set,
the related problem can be recast into a framework of the
generalized eigenvalue problem. The eigen wave number
can then be real, imaginary, or complex. The EBM ap-
proach is a natural generalization of the original PWE
method and it possesses several advantages: Firstly, it
makes it easier to flexibly track and analyze the proper-
ties of various PCs including the loss materials; secondly,
in the EBM the frequency is treated as a scanning vari-
able, thus the value of frequency can always be set to be
positive real even for complex systems with real (imag-
inary, or complex) frequency-dependent permittivity or
permeability; thirdly, the resonant feature of transmittiv-
ity generated from the finite size of the PCs can be easily
analyzed. Numerical simulations have demonstrated that
the EBM is a more powerful and efficient method to track
the above-addressed problems, compared to the conven-
tional PWE method. This EBM has been proven to be
appropriate for calculating the PBGs and reflectivity of
semi-infinite 2D PCs [18–20].

In this work, we study the behavior of light in a two-
dimensional (2D) PC slab with the use of the EBM, and
strictly consider the interfacial matching conditions of
electromagnetic (EM) fields. The specific expressions of
the EM fields, including the reflected field, transmitted
field, and internal field in the PC, can be acquired. Thus,
the phases of the corresponding fields can be evaluated
and they exhibit oscillations as a function of frequency.
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These phases dominate the interference patterns in the
reflected and transmitted fields.

2 Expanded basis method for calculation
of a photonic crystal slab

In an isotropic medium with spatially modulated per-
mittivity ε(r) and permeability µ(r), according to the
Maxwell equations, the magnetic field H(r) satisfies the
following equation

∇×
[

1
ε(r)

∇× H(r)
]

= µ(r)ω2H(r). (1)

As both ε(r) and µ(r) are periodic functions in the PCs,
we can expand them and the magnetic (or electric) field
in terms of a Fourier series as ε(r) =

∑
G

εGeiG·r, µ(r) =
∑
G

µGeiG·r, and H(r) =
∑
G

HGei(k+G)·r, where G denotes

the reciprocal lattice vector; εG and µG are the Fourier
expansion components of ε(r) and µ(r), respectively. ω
and k are the frequency and wave vector, respectively.

In a 2D PC, the EM field equations can be decoupled
from each other, therefore, two independent equations sat-
isfied by the E-polarization (TM) (in-plane magnetic field)
and H-polarization (TE) (in-plane electric field) modes
read∑
G′

µ−1
G−G′(k + G) · (k + G′)Ek,G′ = ω2

∑
G′

εG−G
′Ek,G′

(2)
for the TM mode and∑
G′

ε−1
G−G′(k + G) · (k + G′)Hk,G′ = ω2

∑
G′

µG−G′Hk,G′ ,

(3)
for the TE mode.

We can rewrite equation (2) as
∑

G′G′′
ε−1
G−G′′µ

−1
G−G′′(k + G′) · (k + G′′)Ek,G′′ = ω2Ek,G,

(4)
where we have used

∑
G

εG′′−Gε−1
G−G′ = δ(G′′ − G′).

Equation (4) belongs to a standard eigen equation
when both permittivity and permeability are real and
frequency-independence. In this case, to obtain the disper-
sion spectrum of an infinitely extended periodic system,
we usually scan the wave vector along the boundaries of
the first Brillouin zone (FBZ) to calculate the correspond-
ing eigen frequency through equation (4). However, when
the permittivity and permeability of materials in PCs are
complex or frequency-dependent, equation (4) no longer
corresponds to an eigen value problem. Consequently, it
is impossible to utilize the well-developed programming
packages for solving standard eigen equations to obtain
the dispersions of the PCs. However, by introducing aux-
iliary functions and using expanded bases, the problem
can be rewritten as an eigenvalue problem formally. For

different cases, there are two techniques: One technique is
that we initially fix the direction of the wave vector along
the boundaries of the FBZ and scan the frequency to find
the magnitude of the wave number by solving equation (2);
the second method is that we initially fix one of the com-
ponents of the wave vector, for instance, kx = 0.5(2π/a)
when calculating the dispersion spectrum in a 2D square
lattice PC (with lattice a) along the X to M wave vec-
tor direction in the FBZ (or ky = 0 when calculating the
dispersion spectrum along the Γ to X direction). We then
scan the frequency to find another unknown component
of the wave vector, ky (or kx). The band structures can
ultimately be obtained in this way.

For the first technique, we reformulate equation (2) as

∑
G′

µ−1

G−G
′ [k2 + kk̂ · (G + G

′
) + G ·G′

]EG
′

= ω2
∑
G

′
εG−G

′EG
′

for the TM modes. Applying the formulas of

∑
G

µG
′′−Gµ−1

G −G
′ = δ

(
G

′′ − G
′)

and ∑
G

εG′′−Gε−1

G−G
′ = δ

(
G

′′ − G
′)

to both sides, we then obtain

(
0 Î
R̂ Ŝ

) (
EG′

kEG
′

)
= k

(
EG

kEG

)
, (5)

where

R̂ =
∑
G′′

µG−G
′′

[
ω2εG′′−G

′ − µ−1

G
′′−G

′G
′′ ·G′]

,

Ŝ = −
∑
G′′

µG−G
′′

[
µ−1

G
′′−G

′ k̂ ·
(
G

′′
+ G

′)]
.

Here Î represents a unit matrix {δG,G
′ } and k̂ denotes

the unit directional vector of k. Similarly, we can derive
the corresponding equation for the TE modes, just by per-
forming simple exchange of the permittivity and perme-
ability as well as the replacement of electric field by mag-
netic field in equation (5).

Regarding to the second method, we initially fix one of
the components of the wave vector, kx (or ky), and then
scan the frequency to find another unknown component of
wave vector, ky (or kx). For instance, when ky is initially
fixed, and scanning ω to find kx, equation (2) can then be
rewritten as

(
0 Î
P̂ Q̂

) (
EG

′

kxEG
′

)
= kx

(
EG

kxEG

)
, (6)
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where

P̂ =
∑
G

′′
µG−G

′′

[
ω2εG′′−G

′

− µ−1

G
′′−G

′ .(G
′′

+ ky ŷ) · (G′
+ ky ŷ)

]
,

Q̂ = −
∑
G

′′
µG−G

′′
[
µ−1

G
′′−G

′ (G
′′
x + G

′
x)

]
.

Here ŷ denotes the unit vector in the y-direction.

In analogy to the above procedure, in the case of ini-
tially fixed kx and scanning ω, the corresponding equation
to determine ky can also be obtained. The corresponding
eigen equation has a similar form with the above equa-
tion except for exchanging ky and kx with each other. It
is worth pointing out that in equation (5) (or Eq. (6)) we
have extended the original basis of {EG

′ } to a set of ex-
panded bases of {EG

′ , kEG
′ } (or {EG

′ , kxEG
′ }). The ma-

trix on the left-hand side of equation (5) (or Eq. (6)) now
no longer persists Hermiticity. Therefore, equation (5) (or
Eq. (6)) corresponds to a pseudo-eigenvalue problem with
complex eigenvalues of k (or kx). The wave functions in
the expanded bases correspond to the propagation (with
real k) or evanescence modes (with complex k). By simply
exchanging the permittivity and permeability tensors, as
well as replacing the electric field by the magnetic field,
the analogue equation to equation (6) for the TE modes
can easily be derived.

Now, we investigate the transmissivity and reflectiv-
ity of light in a 2D PC slab which is located at region II
and surrounded by dielectric medium on either side (re-
ferred to as regions I and III), as shown in Figure 1. The
PC consists of a square lattice (with lattice constant a)
of holes (with radius s). The slab thickness direction de-
notes the x-axis; the periodic plane layers are laid on the
yz plane and holes are etched in the medium along the
z-direction. We assume that a plane light wave is launched
upon the surface of the PC slab from its left-side. The
gray, dotted, and black arrows indicate the directions of
the wave vectors of the incident, reflected, and transmit-
ted waves, respectively. The coordination of the center of
the holes in the first layer of the 2D PC slab is chosen
to be x = 0; therefore, the interface between regions I
and II (or regions II and III) is positioned at x1 = −s (or
x3 = (N −1)a+s). Here N represents the number of peri-
odic plane layers in the PC slab. When using the incident
plane wave with Ein = E0e

i[k(in),x(x−x1)+k(in),yy] to illu-
minate the 2D PC, a set of real or complex Bloch modes
may be excited. The EM field in region I is a superposi-
tion of the incident plane wave and the reflected Bragg
waves, whereas in region III, the EM field only contains
the transmitted Bragg waves by considering the scattering
condition. For instance, the electric fields of the TM mode

Fig. 1. Schematic view of the system considered in this paper.
A 2D PC slab with a finite thickness is located at region II
and surrounded by dielectric medium on both sides (denoted
as regions I and III). The PC consists of a square lattice (with
a lattice constant a) of air holes (with radius s). The peri-
odic plane layers are laid on the yz plane and holes are etched
along the z-direction; the thickness of the PC slab is along the
x-direction. A plane light wave is launched upon the surface
of the PC slab from its left-hand side. The gray, dotted, and
black arrows indicate the directions of the wave vectors for the
incident, reflected, and transmitted waves, respectively. The
coordination of the center of the air holes in the first periodic
plane layer of the 2D PC slab sets x = 0. The dielectric con-
stants of holes and background medium are denoted by εa and
εb, and the dielectric constants of medium in region I and III
are denoted as ε1 and ε3, respectively.

in regions I and III read as

E1(x, y) = E0e
i[k(in),x(x−x1)+k(in),yy]

+
∑

n

rnei[k(n)
r,x (x−x1)+k(n)

r,y y], (7)

E3(x, y) =
∑

n

tnei[k
(n)
t,x (x−x3)+k

(n)
t,y y]. (8)

We have k(in),y = ky + m(2π
a ) and ky is limited in the

FBZ. The wave vectors of the nth order reflected and
transmitted Bragg modes are given by k

(n)
r,y = k

(n)

t,y =

ky + Gn with Gn = 2πn/a (n = 0,±1,±2,...); k
(n)
r,x =√

ε1(ω/c)2 − (k(n)
r,y )2 and k

(n)
t,x =

√
ε3(ω/c)2 − (k(n)

t,y )2; ε1
(ε3) is the dielectric constant of medium in region I (III).
Note that k

(n)
r,x or k

(n)
t,x may be imaginary, corresponding

to the decay reflected or transmitted Bragg modes, which
have no contribution to reflectivity or transmissivity. The
electric field in region II can be written as a superposition
of the Bloch modes

E2(x, y) =
∑

α=b,f

∑
j

C
(α)
j

∑
G

E(α),j
G ei[(k

(α)
j,x +Gx)x+(ky+Gy)y],

(9)
where G = Gxx̂+Gyŷ; k

(b)
j,x (k(f)

j,x ) represents the wave vec-
tor of the jth backward (forward) propagating Bloch wave.
Employing the matching technique, the electric fields at
the interface between region I and II, or at the interface
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between region II and III, should satisfy the following
equations:

E1(x1, y) = E2(x1, y),
E2(x3, y) = E3(x3, y),

∂

∂x
E1(x, y)|x1 =

∂

∂x
E2(x, y)|x1 ,

∂

∂x
E2(x, y)|x3 =

∂

∂x
E3(x, y)|x3 . (10)

Substituting equations (7–9) into equation (10), we obtain

Â

⎛
⎜⎜⎝

r̂

Ĉ(b)

Ĉ(f)

t̂

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Êin

0̂
kxÊin

0̂

⎞
⎟⎟⎠ . (11)

Here, we denote r̂ = (r1, r2, ....rNy)T , t̂ = (t1, t2, ....tNy)T ,
Êin = (0, ..., E0, 0, ...)T , and Êin only has one nonzero ele-
ment E0 when Gy = m(2π

a ). Ĉ(b) = (C(b)
1 , C

(b)
2 , ..., C

(b)
Ny

)T ,

Ĉ(f) = (C(f)
1 , C

(f)
2 , ..., C

(f)
Ny

)T , Ny denotes the number of
y-components of plane waves in the expansions. The sym-
bol ‘T ’ in the superscript represents the transposition of
a row vector to a column vector. The matrix Â can then
be written as

Â =

⎛
⎜⎜⎜⎜⎜⎜⎝

−Î Ŝ
(I)
1 Ŝ

(I)
2 0̂

0 Ŝ
(III)
1 Ŝ

(III)
2 Î

K̂(r) Ŝ
(I)
3 Ŝ

(I)
4 0̂

0̂ Ŝ
(III)
3 Ŝ

(III)
4 K̂(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

The elements of Ŝ
(l)
1(2,3,4) are

S
(l)
1 (m, j) =

∑
Gx

E(b),j
Gx,Gm

ei(k
(b)
j,x+Gx)xl , (13a)

S
(l)
2 (m, j) =

∑
Gx

E(f),j
Gx,Gm

ei(k
(f)
j,x+Gx)xl , (13b)

S
(l)
3 (m, j) =

∑
Gx

(
k

(b)
j,x + Gx

)
E(b),j

Gx,Gm
ei(k

(b)
j,x+Gx)xl , (13c)

S
(l)
4 (m, j) =

∑
Gx

(
k

(f)
j,x + Gx

)
E(f),j

Gx,Gm
ei(k

(f)
j,x+Gx)xl , (13d)

where (l = I, III), xI = x1 and xIII = x3. K̂(r) (or K̂(t))
represents a diagonal matrix consisting of the matrix ele-
ments of k

(n)
r,x (or k

(n)
t,x ). There are several consequences of

this method that are important to note. (i) The perfect pe-
riodicity is broken and the evanescent modes can be gener-
ated for a finite PC. Using the conversional eigen equation
shown in equation (4), it is difficult to find the evanescent
modes as it belongs to a problem for seeking real eigen
frequency solutions with an imaginary Bloch wave num-
ber. However, by expanding the original basis {EG} to
the expanded bases of {EG, kxEG} in equation (6), the

eigen functions in the expanded bases contain both the
propagating and evanescence modes. (ii) In the EBM, the
frequency is treated as the scanning variable, therefore,
making it easy to tackle the complex system with real
(imaginary, or complex) frequency-dependent permittivity
or permeability. (iii) The EBM can be applied to treat var-
ious PC structures with arbitrary shaped scatterers and
any kind of lattices of 2D PCs.

3 Results and analysis

To compute the transmission and reflection coefficients,
we have to first decide the direction of the Poynting vec-
tor of every mode. When the Bloch wave vector is real, the
direction of the Poynting vector should be along the ±x di-
rection for the forward/backward Bragg waves. However,
when the Bloch wave vector is complex, from the physi-
cal consideration, the forward (or backward) Bragg waves
should correspond to Im(kx) > 0 (or Im(kx) < 0). The
transmittance T and reflectance R can be calculated from
{rn} and {tn}; the accuracy is estimated by the derivation
value of R + T from unity.

We next determine the behavior of light propagation in
a 2D PC slab. The PC slab is composed of a square lattice
of air holes with radius r = 0.35a. The dielectric of the
background is εb = 12.0 and the dielectric constant of the
medium in regions I and III is the same as ε1 = ε3 = 12.0.
The PC slab contains six periodic plane layers. We cal-
culate the reflection and transmission coefficients through
strictly solving the field equations including the high order
Bragg modes. We reexpress the reflection (transmission)
coefficient as: rn = |rn| exp(iφ(r)

n ) (tn = |tn| exp(iφ(t)
n ))

where |rn| (|tn|) denotes the amplitude and φ
(r)
n (φ(t)

n )
is the phase of the reflection (transmission) coefficient of
the jth order Bragg mode.

The variations of the amplitude and phase of the reflec-
tion (transmission) coefficient as a function of frequency
are depicted in Figure 2: (a) φ

(r)
0,±1, (b) |r0,±1|, (c) φ

(t)
0,±1,

and (d) |t0,±1|, corresponding to the zeroth order Bragg
mode (solid curves) and the ±1-order Bragg modes (dot-
ted curves). Two contiguous curves have been shifted ver-
tically by −0.2 for the amplitude plot (or −0.25π for
the phase plot) for clarity. It is clearly seen that when
ω < 0.2887(2πc/a), only the zero-order Bragg reflected
(transmitted) wave is excited, i.e., a propagating mode; it
contributes to reflectivity (transmissivity). However, the
first order Bragg reflected (transmitted) wave becomes
a propagating mode when ω > 0.2887(2πc/a) and their
amplitude is now comparable with that of the zero-order
Bragg mode. This shows that the higher order Bragg
reflected (transmitted) waves become important compo-
nents and they cannot be neglected. Owing to the con-
servation of wave vectors of fields in the structure, the
Bragg reflected (transmitted) wave vector should satisfy
the following condition: k

(n)

r,y = ky + Gn (k
(n)

t,y = ky + Gn).
When k

(n)

r,y ≤ √
ε1ω/c (k

(n)

t,y ≤ √
ε3ω/c), the Bragg re-

flected (transmitted) waves correspond to the propagating
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Fig. 2. Variations of phase and amplitude of the reflection
(transmission) coefficient as a function of the frequency for
the zero-order (solid curves) and the ±1-order (dotted curves)

Bragg modes in the normal incidence of light: (a) φ
(r)
0,±1, (b)

|r0,±1|, (c) φ
(t)
0,±1, and (d) |t0,±1|. Two consecutive curves in

the phase- (or amplitude-) plot have been vertically shifted by
an amount of −0.25π (or −0.2) for clarity.

modes and contribute to transmissivity (reflectivity).
However, if k

(n)

r,y >
√

ε1ω/c (k
(n)

t,y >
√

ε3ω/c), the Bragg
reflected (transmitted) waves become the decay modes,
consequently, they do not contribute to transmissivity (re-
flectivity). It is apparent from Figure 2 that the reflection
coefficient exhibits oscillations in the extended band. In
the frequency range of ω < 0.2887(2πc/a), only the zero-
order Bragg mode is the propagating mode and the small-
est reflected amplitude approaches zero at some frequen-
cies where the corresponding phase produces a π-jump.
These oscillation structures originate from the finite num-
ber of periodic plane layers in the PC slab, which can be
regarded as an effective medium. For some frequencies,
the phases of transmitted waves become the same after
the transmitted waves experience the repeated reflection
at the boundaries, therefore, the amplitude of the trans-
mitted light will be increased rapidly. This is the so-called
resonant transmission. In this case, the amplitude of the
reflected light reaches zero and its real part and imagi-
nary part change their signs correspondingly. Thus, the
phase undergoes a π-jump at resonant frequency. When
±1-order Bragg modes participate in the transport pro-
cess, the variation of phase in the reflection (transmission)
coefficient with frequency exhibits continuous change for
both the zero order and ±1-order Bragg modes, the ef-
fect of resonant transmission becomes non-obvious in this
case.

Figure 3 shows the variations of the phases and the
magnitudes of the reflection and transmission coefficients
with frequency when the light lands obliquely on the PC
slab at an angle of 30◦: (a) φ

(r)
0,±1, (b) |r0,±1|, (c) φ

(t)
0,±1, and

(d) |t0,±1|, corresponding to the zeroth order Bragg mode
(solid curves), the ±1-order Bragg modes (dotted/dashed
curves). The other parameters remain the same as those
in Figure 2. Two consecutive curves have been vertically
displaced by ±0.2 in the amplitude plot (or ±0.25π in

Fig. 3. Variations of phase and amplitude of the reflection
(transmission) coefficient as a function of the frequency for the
zero-order (solid curves), the ±1-order (dotted/dashed curves)
Bragg modes in the oblique incidence of light at an angle of 30◦:
(a) φ

(r)
0,±1, (b) |r0,±1|, (c) φ

(t)
0,±1, and (d) |t0,±1|. Two consecutive

curves in the phase- (or amplitude-) plot have been vertically
shifted by an amount of ±0.25π (or ±0.2) for clarity.

the phase plot) for clarity. The reflection (transmission)
coefficients are not equal for the ±1-order Bragg modes,
unlike the case of normal incident of the light. It is clearly
seen that when ω < 0.1925(2πc/a), only the +1-order
Bragg reflected (transmitted) wave is excited, contribut-
ing to reflectivity (transmissivity). However, the zero or-
der Bragg reflected (transmitted) wave is excited when
ω > 0.1925(2πc/a), and the −1-order Bragg reflected
(transmitted) wave becomes a propagating mode when
ω > 0.3850(2πc/a). When ω < 0.1925(2πc/a), the small-
est reflected amplitude approaches zero at some frequen-
cies where the corresponding phase exhibits a π-jump. For
ω > 0.1925(2πc/a), the phase of the reflection (transmis-
sion) coefficient exhibits a continuous change.

The distributions of the reflected or transmitted fields
at ω = 0.4(2πc/a) in a specified space are displayed
in Figure 4: (a) for the reflected field in region I and
(b) for the transmitted field in region III. The param-
eters are chosen to be the same as those in Figure 2.
If only the zero-order Bragg wave is excited, for exam-
ple, when ω < 0.2887(2πc/a), the reflected (transmitted)
wave takes a form of the plane wave. In contrast, when
ω > 0.2887(2πc/a), besides the zero-order Bragg mode,
the higher order Bragg modes also participate in the trans-
port process in region I or III. They interfere with each
other and generate an interference pattern, as shown in
Figure 4.

4 Summary

In summary, we calculate the reflection and transmission
coefficients of light in a 2D PC slab, composed of a square
lattice of air holes, with the use of the expanded basis
method (EBM) and the matching technique. We examine
the variations of the amplitude and phase of the reflection
(transmission) coefficient as a function of frequency. It is
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Fig. 4. Field distributions in a specified space when
ω = 0.4(2πc/a), (a) for the reflected field in region I and (b)
for the transmitted field in region III.

found that the excitation of the Bragg modes in the PC
slab crucially depends on the frequency of the incident
light wave and the incident angle. In some frequency
regions, the higher order Bragg reflected (transmitted)
modes become important components and have signifi-
cant contribution to the transmissivity (reflectivity). The
reflection coefficient exhibits oscillations in the extended
band. We also show the distributions of the reflected or
transmitted fields in the case of multiple mode transporta-
tion. When multiple Bragg modes participate in the trans-

port process, they interfere with each other and generate
an interference pattern.

This work was supported by the Chinese National Key Basic
Research Special Fund under Grant No. 2001CB610402.
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